
VaR Without Correlations for Nonlinear Portfolios

By Giovanni Barone-Adesi

University of Alberta, Canada

&

City University Business School, London

Kostas Giannopoulos

University of Westminster, London

Les Vosper

The London Clearing House Ltd

April 1997

Revised February 1998



VaR Without Correlations for Nonlinear Portfolios

1

Abstract

We propose filtering historical simulation by GARCH processes to model the future

distribution of assets and swap values.  Options’ price changes are computed by full re-

evaluation on the changing prices of underlying assets.  Our methodology takes im-

plicitly into account assets’ correlations without restricting their values over time or

computing them explicitly.  VaR values for nonlinear portfolios are obtained without

linearising them. Historical simulation assigns equal probability to past returns, ne-

glecting current market conditions.

1 INTRODUCTION

Current methods of evaluating the risk of portfolios of nonlinear securities are unsatisfac-

tory. Delta-gamma hedging becomes unstable for large asset price changes or for options

at the money with short maturities. Monte-Carlo simulations assume a particular distri-

butional form, imposing the structure of risk that they were supposed to investigate.

Moreover, they often use factorisation techniques that are sensitive to the ordering of the

data.

To overcome the above limitations we propose to adapt the methodology of Barone-

Adesi, Bourgoin & Giannopoulos (1997). We propose to model changes in asset prices

to depend on current asset volatilities. Asset volatilities are simulated to depend on the

most recently sampled portfolio returns. Our simulation is based on the combination of

GARCH modelling (parametric) and historical portfolio returns (non-parametric).  His-

torical returns are adapted to current market conditions by scaling them by the ratio of

current over past conditional volatility.

The scaled returns are the basis of our simulation. To simulate a pathway of returns for

each of  a number of different assets over next 10 days we select randomly 10 past sets

or “strips” of returns, each return in a strip corresponding to an asset’s price change

which occurred on a day in the past. Thus each strip of returns represents a sample of the

co-movements between asset prices. We then iteratively construct the daily volatilities

for each asset that each these strips of returns imply according to our GARCH model.



VaR Without Correlations for Nonlinear Portfolios

2

We use these volatilities to scale each of our sampled returns.  The resulting returns

therefore reflect current market conditions rather than historical ones.

Many VaR models assume that asset returns follow a normal distribution.  Normality

simplifies VaR calculation because all percentiles are assumed to be multipliers of the

standard deviation. A number of studies, however, have found that the empirical distri-

butions of returns are non-normal i.e. they have fat-tails and non-zero skewness. In that

case assuming normality in calculating VaR leads to the under-prediction of uncommon

(but possible) losses.

The core of our methodology is the historical returns of the data. The “raw” returns,

however,  are unsuitable for historical simulation because they do not fulfil the proper-

ties1 necessary for unbiased results.

Among others Mandelbrot (1963) found that most financial series contain volatility

clusters. In VaR analysis, volatility clusters imply that the probability of a specific loss

being incurred is not the same on each day. During days of higher volatility we will ex-

pect larger than usual losses.

2 SIMULATING A SINGLE PATHWAY

In our simulation we do not impose any theoretical distribution on the data. We use the

empirical (historical) distribution of the return series.  However, “raw” returns cannot be

used in the simulation unless they are i.i.d. (independently and identically distributed). To

render returns i.i.d. we need to remove any serial correlation and volatility clusters pres-

ent in the dataset. Serial correlations can be removed by adding an MA term in the con-

ditional mean equation. One possible way to remove volatility clusters is to write the

conditional variance as an autoregressive heteroskedastic process. Hence, we model re-

turns as a GARCH process (Bollerslev,1986) and consequently capture any volatility

clusters2. When appropriate we insert a moving average (MA) term in the conditional

                                               
1 For simulation, returns should be random numbers drawn from a stable distribution  i.e. they should be
identically and independently distributed (i.i.d.).

2 The particular form of GARCH process used for a series was determined by statistical testing.
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mean equation (1) to remove any serial dependency. Therefore, an ARMA-GARCH(1,1)

model can be written as:

rt   =  µ rt −1   +  θε t −1  +  ît ît  ~ N(0, ht) (1)

ht  =  ω  +  àε t −1
2  +  βht-1 (2)

where µ is the AR(1) term, θ is the MA term, ω is a constant and ît the random residual.

The GARCH(1,1) equation defines the volatility of ît  as a function of the constant ω

plus two terms reflecting the contributions of the most recent surprise ît-1 and the last

period’s volatility ht-1 ,  respectively.

To bring returns close to a stable distribution we need to divide the residual, ε
^

t  by the

corresponding daily volatility estimate, ht

^

. Thus, the standardised residual return is

given as:

 $et =  

ε t

th

^

^ (3)

This makes the set of standardised residuals independently and identically distributed

(i.i.d.) and therefore suitable for historical simulation.

As Barone-Adesi, Bourgoin and Giannopoulos (1998) have shown, historical standard-

ised innovations can be drawn randomly (with replacement) and after being scaled with

current volatility, may be used as innovations in the conditional mean (1) and variance

(2) equations to generate pathways for future prices and variances respectively.  This

methodology stands as follows:
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• we draw standardised residual returns as a random vector é of outcomes from a sta-
tionary distribution:

e*   =  { ei
*  = é}, é = { e 1, e 2,..., e T} (4)

where i = 1,....,10 days.

• to get the innovation forecast (simulated) value for period t+1, zt +1
* ,  we draw a ran-

dom standardised residual return from the dataset é and scale it with the volatility of

period3 t+1 :

zt +1
*  = e1

*
 . 

$ht +1 (5)

• we begin simulation of the pathway of the asset’s price from the currently known as-
set price, at period t. The simulated price pt +1

*   for t+1 is given as

pt +1
*   =  pt  + pt ( µ rt   +  θ zt

*  +  zt +1
* ) (6)

where z*  is estimated as in (5).

For i = 2, 3...  the volatility is unknown and must be simulated from the randomly se-

lected re-scaled residuals.  In general ht i+
*  , the (simulated) volatility estimate for pe-

riod t+i, is obtained as:

ht i+
*  =  ω α β +  (z  )  +   t+i-1

* 2 ht i+ −1
* i ≥   2 (7)

                                               
3 The variance of period t+1 it can be calculated at the end of period t as:

ht+1  =  ω  +  àε t
2  +  βht, in which ît

  is the latest actual residual return in (1).
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where z*  is estimated as in (5).

New elements ε t
*  are drawn from the dataset é to form the simulated prices pt i+

*  as in

(6).

The distribution of evolved prices at the end of the pathway (e.g. when i = 10) for the

single asset is obtained by replicating the above procedure a large number of times e.g.

5000.

3 SIMULATING MULTIPLE PATHWAYS

To estimate risks for a portfolio of multiple assets we need to preserve the multivariate

properties of asset returns;  however, methodologies which use the correlations matrix of

asset returns encounter various problems with this.  The use of conditional multivariate

econometric models which allow for correlations to change over time, is restricted to a

few series at a time.  The data inputs in a correlations matrix increase with the square of

the number of assets in the portfolio:  for large portfolios the number of pairwise corre-

lations becomes unmanageable.

When estimating time-varying correlation coefficients independently from each other,

there is no guarantee that the resulting matrix satisfies the multivariate properties of the

data.  In fact the resulting matrix may not be positive definite.

Additionally, the estimation of VaR from the correlations matrix requires knowledge of

the probability distribution of each asset series.  However, empirical distributions may

not conform to any known distribution:  often the empirical histograms are smoothed and

forced to follow a known distribution convenient for the calculations.  VaR measures

which are based on arbitrary distributional assumptions may be unreliable;  preliminary

smoothing of data can cover up the non-normality of the data and VaR estimation, which

is highly dependent on the good prediction of uncommon events, may be adversely af-

fected from smoothing the data.
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Finally, correlations measured from daily returns can be demonstrated to be unstable.

Even their sign is ambiguous.  Estimated correlations coefficients can be the subject of

such great changes at any time, which even conditional models do not capture, that the

successful forecast of portfolio losses may be seriously inhibited.

Our approach does not employ a correlation matrix.  For a portfolio of multiple assets

we extend our bootstrapping methodology4 to simulate multiple pathways.  We select a

random date from the dataset, which will have an associated set of i.i.d. residual returns

for each asset.  This “strip” of i.i.d. residual returns, derived at a common date in the

past, is one sample from which we begin modelling the co-movements between respec-

tive asset prices.

Thus for each asset for i = 1,...,10 days we have the sampled residuals denoted by sub-

scripts 1, 2, 3,....,  for the different assets.

Asset 1:  e1
*   =  { e i1,

*  = é1}, é1 = { e 1, e 2,..., e T}1 (8)

Asset 2:  e2
*   =  { e i2,

*  = é2}, é2 = { e 1, e 2,..., e T}2 (9)

Asset 3:  e3
*    =  { e i3,

*  = é3}, é3 = { e 1, e 2,..., e T}3 (10)

and so on for all the assets in the dataset.

From the dataset é of historical standardised innovations, for i = 1, a date is randomly

drawn and hence the associated residuals e1
* , e2

* , e3
*   are selected.  At i = 2  another date

is drawn, with its corresponding residuals, and so on for i = 3, 4....etc.  Thus pathways

                                               
4 See Efron and Tibshirani (1993), “An Introduction to the Bootstrap”, in which the bootstrapping
methodology is introduced and described in depth.
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for variances and prices are constructed for each asset which reflect the co-movements

between asset prices:

For i = 1 to 10:

Asset 1: h t i1,
*

+  =  ω1 + α1( z t i1 1,
*

+ − )2 + β1 h t i1 1,
*

+ − (11)

p t i1,
*

+   =   p t i1 1,
*

+ −  + p t i1 1,
*

+ − ( µ1 r t i1 1, + −   +  θ1  z t i1 1,
*

+ −  +  z t i1,
*

+ ) (12)

Asset 2: h t i2,
*

+  =  ω2 + α2( z t i2 1,
*

+ − )2 + β2 h t i2 1,
*

+ − (13)

p t i2,
*

+   =   p t i2 1,
*

+ −  + p t i2 1,
*

+ − ( µ2 r t i2 1, + −   +  θ2  z t i2 1,
*

+ −  +  z t i2,
*

+ ) (14)

Asset 3: h t i3,
*

+  =  ω3 + α3( z t i3 1,
*

+ − )2 + β3 h t i3, 1+ −
* (15)

p t i3,
*

+   =   p t i3 1,
*

+ −  + p t i3 1,
*

+ − ( µ3 r t i3 1, + −   +  θ3  z t i3 1,
*

+ −  +  z t i3,
*

+ ) (16)

where z*  is estimated as in (5).

4 AN EMPIRICAL INVESTIGATION

We illustrate our methodology with a numerical example of a portfolio of three assets. In

addition we use portfolios of futures and options traded on the various exchanges in

London and portfolios of “plain vanilla” interest rate swaps, to demonstrate some results

of our application.
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4.1 Description of Dataset for London Exchanges

We use two years of historical daily prices for futures contracts traded on the London

exchanges.  From these we form logarithmic returns rt  for each of the futures price se-

ries:

rt   =  ln (
p

p
t

t −1

) (17)

where pt  = daily prices for that series.

These returns form the basis of our dataset;  we form the i.i.d. residual returns from them

as described in equations (1) to (3).

For swaps evaluations we employ two years of historical daily zero coupon interest rates,

obtained from Reuters, for 1 day, 30 days, 90 days, 180 days, 360 days, 2 years, 3 years,

4 years, 5 years, 7 and 10 years, in four currencies: US Dollar, Sterling, Japanese Yen

and Deutschemarks.

From these we form logarithmic returns as in equation (17);  i.i.d. residual returns are

obtained from these, again as in equations (1) to (3).

4.2 Example

Consider a portfolio of  3 assets (e.g. commodity futures), with net lots 2, -5 and 10 re-

spectively.  The current close of business is 7/2/97 and we wish to estimate the distribu-

tion of portfolio values for 2 days ahead.  GARCH forecast estimates of asset annual

volatilities for one day ahead (i.e. 8/2/97) are 10%, 15% and 8% respectively5.  Asset

prices are currently $1700, $2000 and $1900 per tonne of asset;  the asset prices are

quoted at 25 tonnes per lot.  Conditional mean returns are assumed for simplicity to be

                                               

5 These volatilities are annualised;  we need to divide them by 252  to make them into daily values.
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zero at all times.6 The database of historical, normalised asset returns is illustrated in

Table 1 below:7

Table 1

We make the first random selection of a date:  referring to the table of normalised values,

suppose this to be on 21 May 968.  The row of residual returns is (-0.80552,      -0.5346,

0.278256,.....) for each of the assets.

                                               
6 For some futures prices this is not an altogether unreasonable assumption;  it means we can ignore any
AR terms.   MA terms are also ignored;  much of our data in fact had zero MA terms.  Thus we set θ
and µ  to zero.

7 Table 1 is an extract, for illustrative purposes, of normalised residual returns based on closing prices
for three commodity futures over a two year period.  We can have as many columns of residual returns
as there are assets, or as in the case of swaps in a given currency, a set of columns of interest rate resid-
ual returns e.g. from 1 day to 10 years per currency, from which swap evaluations may be performed.

8 As the random sampling is with replacement, we may draw the same date more than once during the
simulation process.

Asset 1 Asset 2 Asset 3 ... Asset n
. . . . ... .
. . . . ... .

1-Sep-95 -1.38141 -1.01865 0.25736 ... .
4-Sep-95 -2.10091 0.182623 0.220097 ... .
5-Sep-95 1.205624 0.036487 -0.88315 ... .
6-Sep-95 -0.11472 0.908106 -0.51859 ... .
7-Sep-95 -0.53701 -0.36231 0.185504 ... .
8-Sep-95 -1.04343 -0.32714 -0.93079 ... .

11-Sep-95 -2.95359 0.072785 -0.78824 ... .
. . . . ... .
. . . . ... .

21-May-96 -0.80552 -0.54346 0.278256 ... .
. . . . ... .
. . . . ... .

13-Nov-96 -2.81372 0.244584 0.294773 ... .
. . . . ... .
. . . . ... .

7-Feb-97 0.824807 1.476361 2.836008 ... .
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Each residual is re-scaled by the forecast daily volatility ht +1
*  of the corresponding as-

set:

Asset 1:  z t1 1,
*

+ = -0.80552  x  
01

252

.
= -0.00507

Asset 2: z t2 1,
*

+ = -0.5346  x  
015

252

.
= -0.00514

Asset 3: z t3 1,
*

+ = 0.278256  x  
0 08

252

.
= 0.001402

We now apply each re-scaled return to the current asset price at the close of business.

This will give a forecast of each asset’s price for one day ahead, based on how prices

moved together on 21 May sample.

Asset 1:  p t1 1,
*

+ = $1700 + ($1700 x -0.00507) =  $1691.38

Asset 2: p t2 1,
*

+ = $2000 + ($2000 x -0.00514) =  $1989.72

Asset 3: p t3 1,
*

+ = $1900 + ($1900 x 0.001402) =  $1902.66

Using the re-scaled residual returns i.e. from 21 May, in the GARCH variance equations

for each asset, we next compute the variance forecasts for 2 days ahead:

Asset 1: h t1 2,
*

+  =  ω1 + α1( z t1 1,
*

+ )2 + β1 h t1 1,
*

+

where z t1 1,
*

+  = -0.00507 and variance h t1 1,
*

+  =  
01

252

2
.





.  Assuming the coefficients ω1,

α1, and β1 for this asset as 0.00001552, 0.1 and 0.642 respectively, we have for the stan-
dard deviations:
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h t1 2,
*

+ = ω α β1 1
2

1
20 00507 0 0063+ − +( . ) ( . ) =  0.0066

Similarly we get

Asset 2: h t2 2,
*

+ = 0.0092

Asset 3: h t3 2,
*

+ = 0.0054

The next step is obtain the 2 day ahead price forecasts:  we randomly sample a second

date in the database:  suppose this to be 13 November 1996.  The respective standard-

ised returns this time are -2.81372, 0.244584 and 0.294773.  These are re-scaled by the 2

day ahead volatility forecasts computed in the previous step:

Asset 1:  z t1 2,
*

+ = 0.0066  x  -2.81372 = -0.0186

Asset 2: z t2 2,
*

+ = 0.0092  x   0.244584 = 0.00225

Asset 3: z t3 2,
*

+ = 0.0054  x  0.294773 = 0.00159

We then apply these returns to the 1 day forecast prices to obtain the 2 day forecast
prices:

Asset 1: p t1 2,
*

+ =  $1691.38 + ($1691.38 x -0.0186)  =  $1659.92

Asset 2: p t2 2,
*

+ =  $1989.72 + ($1989.72 x 0.00225)  =  $1994.20

Asset 3: p t3 2,
*

+ =  $1902.66 + ($1902.66 x 0.00159)  =  $1905.69

The 2 day ahead price pathways starting from the close of business are:

For i = (1, 2):
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Asset 1: p t t t1 1 2,{ , , }
*

+ + =   $1700,  $1691.38,  $1659.92

Asset 2: p t t t2 1 2,{ , , }
*

+ + =   $2000,  $1989.72,  $1994.20

Asset 3: p t t t3 1 2,{ , , }
*

+ + =   $1900,  $1902.66,  $1905.69

for the first simulation.  If we wish to increase the length of paths e.g. to 10 days ahead,

we continue the procedure for the eight further steps.

4.3 Aggregating Asset Pathways to Obtain Portfolio Pathways

For the first simulation we select the asset pathways which correspond to the contracts in

the portfolio.  These are the vectors

p1, {t, t+1,,..., t+i} , p2, {t, t+1,..., t+i} ,  p3, {t, t+1,...,  t+i} ,......,pn, {t, t+1,..., t+i} (18)

for n assets and a time horizon of i days.  If the positions i.e. net lots of contracts in the

portfolio are represented by the scalars w1, w2, w3,....,wn then the position-weighted

pathways are the vectors

w1p1,{t, t+1,...,  t+i} , w2p2, {t, t+1,..., t+i} , w3p3, {t, t+1,..., t+i} ,......, wnpn, {t, t+1,..., t+i} (19)

The vectors of  pathways are added to form the portfolio path ππt, t+1,...,t+i

ππt, t+1,...,t+i  = w1p1, {t, t+1,...,  t+i} + w2p2, {t, t+1,..., t+i} + w3p3, {t, t+1,..., t+i} +,...,+ wnpn, {t, t+1,..., t+i}

(20)

Continuing our example to illustrate:

From the closing prices and for i = (1, 2) the paths are
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Asset 1:  w1p 1 1 2,{ , , }
*

t t t+ +  = [2($1700),  2($1691.38),  2($1659.92)]

 = [$3400,  $3382.76,  $3319.84]

Asset 2:  w2p 2 1 2,{ , , }
*

t t t+ +  = [-5($2000),  -5($1989.72),  -5($1994.20)]

 = [-$10,000,  -$9948.60,  -$9971]

Asset 3:  w3p 3 1 2,{ , , }
*

t t t+ +  = [10($1900),  10($1902.66),  10($1905.69)]

 = [$19,000,  $19,026.60,  $19,056.90]

The portfolio path based on prices per tonne is

ππt,  t+1,  t+2 = w1p 1 1 2,{ , , }
*

t t t+ +  + w2p 2 1 2,{ , , }
*

t t t+ + + w3p 3 1 2,{ , , }
*

t t t+ +

= [$3400,  $3382.76,  $3319.84]

+ [-$10,000,  -$9948.60,  -$9971]

+ [$19,000,  $19,026.60,  $19,056.90]

= [$12,400,  $12,460.76,  $12,405.44]

Multiplying by the lot size of 25 tonnes per lot gives the portfolio value pathway for the

first simulation:

ππt,  t+1,  t+2 = [$310,000,  $311,519,  $310,144]

The change in the portfolio’s value after 2 days, from its closing value is $310,144 -

$310,000 = $144 which for this (first) simulation is a gain in value.
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5 DISTRIBUTIONS

To obtain a distribution of portfolio values, we replicate the whole of the above proce-

dure 5000 times, obtaining 5000 simulated portfolio values for a given time horizon.

From these we construct the probability distribution function for the portfolio.

Figures 1 and 2 illustrate examples of distributions of price pathways, in this case for the

LIFFE German Bund financial futures contract (the near month was used), for 5000

simulations, one day and ten days ahead respectively.  We note in particular how far from

the normal distribution, is the one-day ahead histogram of prices:

Figure 1

The 1-day ahead distribution of German Bund Futures Prices over 5000 Simulations

Empirical distribution for A_01
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Figure 2

The 10-day ahead distribution of German Bund Futures Prices over 5000 Simulations

Empirical distribution for A_01

104103102101
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Below we obtain a distribution of portfolio values at a given time horizon e.g. 10 days.

The set of gains or losses from the value of the portfolio based on closing prices (at the

start of simulation) can be obtained, to give their distribution.  The  representative

“lowest value” of the portfolio e.g. for the 99th percentile, can be compared to the value

of the portfolio at the start of simulation, to obtain the 99th percentile loss.  A ten-day

ahead multi-contract portfolio example (a portfolio of futures and options in a variety of

LIFFE contracts) is illustrated in Figure 3:
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Figure 3

10-day ahead Portfolio Value Distribution over 5000 Simulations

Histogram for Member 37H
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5.1 Options

Options price paths are obtained from the corresponding asset price paths by using an

options pricing model applied to each asset price in the path and other relevant option

pricing parameters e.g. implied volatility, strike price, time to expiry and interest rate.

For the present we keep the values of these other parameters equal to their values at the

start of simulation.

Thus if the call option price is denoted c  = f( pt , X, σ, Γ-t, r) (21)

where pt  is the underlying asset price at current time t, X is the strike price, σ is the

implied volatility, Γ-t is the time to expiration and r the risk-free interest rate, then the

price path for the call option on a given asset is
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c t t t i, ,,+ +1
  =   f( pt , X, σ, Γ-t, r), f( pt +1 , X, σ, Γ-t+1, r),..., f( pt i+ , X, σ, Γ-t+i , r) (22)

Where pt ,..., pt i+  is the first vector (i.e. for the first asset) from (18).

Additional option pathways use the asset prices from the corresponding asset price vec-

tors in (18).  The option price paths are weighted  as in (19) with options net lots.  The

portfolio pathway is given as before in (20). The put price is similarly given.

Figure 4 illustrates an example of the ten-day ahead distribution of prices for an out-of-

the-money call option, for 5000 simulations, on the LIFFE Long Gilt futures contract

(near month).  The time to expiry was three and a half months (expiry date 15/11/97),

the strike price was 123 points, the current underlying futures price was 115.44 points.

The option’s market price was 0.03 and the ten-day median forecast price was 0.009;

the minimum price for the option was zero and the maximum of 0.138 is indicative of the

non-linearity of option pricing.

Figure 4

Forecast made on 31/7/97 for 10-days ahead over 5000 simulations
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6 SWAPS

An interest rate swap’s value is derived from a sum of discounted cash-flows as defined

by the swap’s contract terms:  to value a swap we require the set of zero coupon interest

rates corresponding to the dates of these cash-flows.

For example for a swap with 3 future cash-flows remaining before it matures, its value is

denoted by an appropriate swap valuation function of zero coupon interest rates:

s = g(ι1 ,ι2 , ι3 , φ) (23)

where φ represents parameters defined in the swap contract necessary to value it (e.g.

coupon, floating interest rate, notional principal amount, payment dates of the cash-

flows, maturity date, etc.); ι1 ,ι2 , andι3  are zero coupon interest rates (term structure)

for dates corresponding to the future payment dates.  The value of a swap at a given

close of business will utilise the zero coupon the term structure at this time.

A swap value pathway is obtained from simulation of the pathways of zero coupon inter-

est rates.  The simulation of interest rate pathways for “key” rates (in this case the zero

coupon rates in the description of the dataset) is described by equations (8) to (16) for

the simulation of multiple pathways.

Thus for the eleven zero coupon interest rates described in the dataset, for 1 day to 10

years, each of the rates at time t in the present corresponds to asset prices p*  at time t.

Equations (12), (14) and (16) describe the pathways for the first three interest rates;

variances for these are described by equations (11), (13) and (15).  We will  require 11

sets of equations for our interest rates in each of the four currencies in the dataset.  In

a given currency simulated pathways for the eleven rates constitute a simulated term

structure pathway from which swaps may be valued:  to obtain simulated rates which
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correspond to particular cash-flow dates in a swap we interpolate between the simulated

key rates.9

Figure 5 is an example of the term structure of interest rates out to 10 years for Sterling

prior to simulation, produced by linear interpolation:

Figure 5

GBP Term Structure
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For simplicity, if we consider that the three asset (interest rate) pathways from equations

(12), (14) and (16) correspond to the cash-flow dates for our swap (no interpolation of

rates required), then writing ι*  for p* , we depict the 10 x 3 matrix:

                                               
9 The production of  an interest rate term structure from simulated rates requires the use of smoothing
algorithms; we examine various methods of interpolation between the “key” rates by which we define
the term structure e.g.  linear interpolation, cubic splines, polynomial smoothing approaches.
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(24)

where i = 1 to 10 days.

Each column of the matrix represents equations (12), (14) and (16) respectively i.e. they

are the asset pathways to 10 days. To obtain a swap value pathway we require a row

from the matrix for each day in the swap value path:

s t i+
* = g(ι1 1,

*
t + ,ι2 1,

*
t + ,ι3 1,

*
t+ ,..........,ι1,

*
t i+ ,ι2,

*
t i+ ,ι3,

*
t i+ , φ) (25)

For many swaps, the swap value pathways are aggregated as described generally for any

set of assets, in equations (18) to (20);  the net positions wn for swaps can be represented

as +1 or -1 for each swap, to describe the payment or receipt of fixed interest cash-flows

respectively.  Furthermore, aggregated values for portfolios of swaps and futures and

options contracts may be obtained with no fundamental change to our methodology.

5000 simulations may be performed for portfolios of swaps, futures and options, from

which worst case losses can be obtained.10

In figure 6, we simulate 5000 values of a random portfolio of “plain vanilla” interest rate

swaps in Sterling, over a 10 day holding period.  The 5000 portfolio values are obtained

from 5000 simulated interest rate term structures.

                                               
10 Appropriate currency exchange rates for the given close of business are currently used in the simula-
tions where contracts are denominated in different currencies, to convert all values to a common cur-
rency.
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Figure 6:

Random Swaps Portfolio Values over 10 day holding period for 5000 simulations (y-axis is the count of values in
each bar). Portfolio Values in Sterling

The distribution of portfolio values is shown in the histogram; the lowest value, repre-

sented by 99th percentile, is compared to the median portfolio value. This is the  “worst”

loss for the portfolio, equal to £1,087,421 and is the difference between the least value at

the 99th percentile of £4,280,410 and median value of £5,367,831.11

In Figure 7 we show the simulated linearly interpolated term structure from which the

99th percentile, 10 day holding period portfolio value is calculated.  This simulated term

structure is compared to the actual observed term structure 10 days on from the date at

which simulation was started.

                                               
11 Alternatively the loss may be computed from the initial portfolio value rather than the median.  The
two losses are the same in RiskMetrics because the median is assumed to be equal to the initial value in
that methodology.
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Figure 7

Sterling Interest Rate Term Structures:  actual and after 
simulation, at 99th percentile and 10 day holding period
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7 CONCLUSION

Our simulation methodology of nonlinear securities allows for a fast evaluation of VaR

and worst case scenarios for large portfolios. It takes into account current market condi-

tions and does not rely on the knowledge of the correlation matrix of security returns.

Our simulation is based on the empirical distribution of the data;  we do not impose a

particular probability function and so we do not compress the tails or alter the skewness

of portfolio returns.  Therefore our methodology provides reliable assessments of un-

common but possible portfolio losses.
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