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VaR (value-at-risk) estimates are currently based on two main tech-
niques: the variance-covariance approach or simulation. Statistical
and computational problems affect the reliability of these techniques.
We illustrate a new technique ± ®ltered historical simulation (FHS) ±
designed to remedy some of the shortcomings of the simulation
approach. We compare the estimates it produces with traditional
bootstrapping estimates.

(J.E.L.: G19).

1. Introduction

Early VaR estimates were linear multipliers of variance-covariance esti-

mates of the risk factors. This class of market risk techniques soon became

very popular, mainly because of their link to modern portfolio theory. How-

ever, during worldwide market crises, users noticed that early models failed to

provide good VaR estimates. In addition, variance-covariance VaR techniques

require a large number of data inputs; all possible pairwise covariances of the

risk factors must be included in a portfolio. To process all the necessary

information demands much computer power and time. Factorization methods

provide only partially satisfactory answers.

The early VaR models are also referred as parametric because of the

strong theoretical assumptions they impose on the underlying properties of the

data.1 One such assumption is that the density function of risk factors in¯u-

encing asset returns must conform to the multivariate normal distribution.2
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The empirical evidence however, indicates that speculative asset price changes,

especially the daily ones, are rather non-normal. Excess kurtosis will cause

losses greater than VaR to occur more frequently and be more extreme than

those predicted by the Gaussian distribution. Many risk managers remember

the large losses they faced during the Mexico (1996), Asian (1997) and

Russian (1998) market crises. During these periods, negative returns several

standard deviations beyond the 2.33 threshold predicted by the normal

distribution3 were recorded within only a few days. A large number of markets

were crashing together; the correlation forecasts used to calcualted VaR failed

to predict such a synchronous crash. That resulted in further VaR failure.

The problems of earlier models spurred the search for better estimates of

VaR. A number of recent VaR techniques are based on non-parametric or a

mixture of parametric and non-parametric statistical methods. The family of

historical simulation (HS) models belongs to the former group. The ®ltered

historical simulation (FHS) as developed by Barone-Adesi et al. (1998) and

Barone-Adesi et al. (1999, 2000) belongs to the second group. This paper

analyses the assumptions on which these models are based. In addition we

compare the VaR estimates produced by the above models in linear and

nonlinear portfolios.

2. Literature Review

Regulators require that ®nancial institutions backtest their internal VaR

models (Basle Committee on Banking Supervision, 1995). Although the

popularity and the use of HS has increased during the last few years, reports of

backtests conducted by users are not publicly available. Some researchers,

however, used smaller portfolios to backtest HS. Van den Goorbergh and Vlaar

(1999) used rolling windows of different lengths (250, 500, 1,000 and 3,038

days) over a 15-year period to backtest HS daily data on the AEX (Dutch

equity index). They found that the failure rate, i.e. the probability that actual

losses exceed VaR, is often exceeding the corresponding left-tail probabilities.

Van den Goorbergh and Vlaar found that results are sensitive to the selection

of the window length.4

In another study, Vlaar (2000) investigates the accuracy of various VaR

models on Dutch interest rate based portfolios. He concluded that HS produced

satisfactory results only when a long history is included in the data sample.

Brooks and Persand (2000) investigated the sensitivity of VaR models due

to changes in the sample size and weighting methods. They used a set of

equally weighted portfolios each containing two asset classes selected from a

3 At 99% probability.
4 They strongly criticized the use of HS in predicting extreme events (far left on the tail)

when the window is not of a substantial length.
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set of national equity indices, bond futures and FX rates.5 They found strong

evidence that VaR models could produce very inaccurate estimates when the

`right' historical data sample length is not selected.

Perhaps the most comprehensive model comparison study published to date

has been carried out by Hendricks (1996). Hendricks used 4,255 daily observa-

tions of eight FX rates against the US dollar and several performance criteria to

study the performance of twelve VaR models. The twelve VaR models were

grouped in three categories, equally weighted moving average, exponentially

weighted moving average and HS approaches. He found that none of the twelve

approaches is superior to others in every criterion. Furthermore, Hendricks

reported that risk measures from the various VaR approaches for the same

portfolio on the same data could differ substantially. Differences in the accuracy

across models were also sensitive to the choice of the level of probability used in

the VaR calculation. When a 95% probability was used in the VaR calculation,

Hendricks found that the three approaches produced accurate risk measures.

However, when a 99% probability was used there was a large discrepancy in the

risk calculation between the three approaches. In general, the three approaches

predict only between 98.2 per cent and 98.5 per cent of the outcomes. Hendricks

failed to single out any VaR approach and he predicted that a more accurate VaR

model may be created by combining the best features of each single approach.

Pritsker (2000) reviews the assumptions and limitations of HS and

weighted HS (Boudoukh et al., 1998). He points that both methods associate

risk with only the lower tail of the distribution. In an example, he showed that

after the crash of 1987 the estimated VaR of a short equity portfolio, as

computed by HS or weighted HS, did not increase. The reason is that the

portfolio recorded a huge pro®t during the day of the crash. Pritsker goes

further by formulating some interesting properties of the HS and weighted HS.

He showed that if the portfolio's return follow a GARCH(1,1) process, then at

a 1-day VaR horizon and 99% con®dence level, the HS and weighted HS

methods fail to detect increases in VaR about 31 per cent of the time. In a

simulated example, he showed that the VaR on a short equity portfolio did not

increase during the days after the crash of 1987.

Barone-Adesi et al. (1999) carried out an extensive backtest analysis for

the FHS model. They used economic and statistical criteria to analyse the

breaks on 100,000 daily portfolios held by ®nancial institutions. The portfolios

consisted of interest rate futures and options on futures trading at LIFFE

during 1996 and 1997, as well as purely plain vanilla swaps and mixed

portfolios invested on futures, options and swaps. Overall, their ®ndings

sustain the validity of FHS as a risk measurement model.

5 The indices used were S&P500 and FTSE100. The bond portfolios were the 30-year US

Treasury bonds, UK gilt and long-term German Bund. The FX rates used were dollar/Swiss franc,

dollas/Dmark and dollar/yen. The US Treasury bond rates were obtained from near-month futures

prices on the 30-year interest rate. No information was given for the other two bonds.
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3. Historical Simulation (HS)

HS (bootstrapping) is being increasingly used in the risk management

industry. It consists of generating scenarios by sampling historical returns

associated with each risk factor included in the portfolio. The aggregate value

of all linear and derivative positions produces a simulated portfolio value. The

procedure is repeated many times using all past returns.6

HS does not require any statistical assumption beyond stationarity of the

distribution of returns or, in particular, their volatility.7 Since the estimated

VaR is based on the empirical distribution of historical returns of each

individual risk factor, it re¯ects a more realistic picture of a portfolio's past

risk. At least one year of recent daily returns must be used in HS. A longer

period is more appropriate when available, but availability of historical data is

often problematic for the universe of (linear) contracts or other risk factors. In

its simplest form, HS can be shown by the following example. Given a data set

of historical returns È, we draw an element e�
e� � fe�1 , e�2 , . . ., e�Tg e�i 2 È

where i � 1, . . ., T refers to past days to form a simulated price for asset Y :

Y�T�1 � Y T � Y�T e�(1)

The process in (1) is repeated and the simulated price series Y� is

recursively updated to the last day of the VaR horizon. This sequence of

simulated prices for day T � 1, T � 2, . . ., T � N forms a simulated pathway

or scenario for the risk factor Y. Here is a simple example:

Assuming that YT is 100 and the vector e� has values

fÿ0:01053, ÿ0:00759, ÿ0:00408, 0:00474, 0:00093, 0:00921, 0:01712,

ÿ0:00443, 0:01342, ÿ0:00304g
The sequence for simulated prices, Y�T�1, . . ., Y�T�10 for the ®rst simulation

run will be

Day: 1 2 3 4 5

Price: 98.94707 98.19566 97.79456 98.25811 98.34967

Day: 6 7 8 9 10

Price: 99.25578 100.9552 100.5078 101.8569 101.547

6 Past returns are drawn with or without replacement.
7 As we are going to see later this becomes a limitation which under certain market

conditions results in underestimation of VaR.
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Derivative securities are priced from the knowledge of the simulated price

of the underlying asset by their full re-evaluation under a pricing model at each

node. Derivative values can be aggregated to form a simulated value of all

positions on each contract.

HS relies on a uniform distributions to sample innovations from the past.8

These innovations are applied to current asset prices to simulate their future

evolution. Once a suf®cient number of different paths have been explored, it is

possible to compute a portfolio's risk without making arbitrary distributional

assumptions. That makes HS especially useful in the presence of abnormally

large historical losses. The ®nal outcome of HS is the simulated distribution of

portfolio values at the desired horizon. VaR is a percentile of that distribution.

HS has a number of advantages. It is easy to understand and to implement.

It uses the empirical distribution of past returns to generate realistic future

scenarios. Nonlinear positions can be re-priced under each scenario.9 Further-

more, HS does not require the computation of a covariance matrix. In fact,

statistical dependencies across simultaneous asset returns can be kept by taking

returns from the same day in the historical record for all the assets at each node

in the simulation.

HS's ability to predict future losses may be undermined, however, if the

distribution of any risk factors is not i.i.d.10 Using a constant volatility model

to calculate VaR when the distribution of returns is not stationary, as is the case

with most daily ®nancial time series, could be very misleading.11 In fact, the

probability of having a large loss is then not equal across different days. During

days with higher volatility we would expect larger than usual losses. That

contrasts with HS, where the volatility of N days is proportional to the square

root of time, i.e. constant volatility is assumed over any period.

8 HS is also known as bootstrapping simulation. For a detailed discussion about this

simulation technique see Efron and Tibshirani (1993).
9 This is a more ef®cient treatment of derivative security risk when compared to models that

use linear approximations. But as we can see later, it still presents the weakness of assuming that

implicit volatility is constant.
10 Independently and identically distributed. When returns are i.i.d. and the moments of the

distribution are known, any inferences made about potential portfolio losses will be accurate and

unchanging over time. Stationarity implies that the probability of occurrence of a speci®ed loss is

the same for each day. Independence implies that the size of price movement in one period will not

in¯uence the movement of any successive prices. These properties combined with the normality

assumption simplify the VaR calculation for any holding period and probabilty. Under these

hypotheses, VaR for longer periods can be found by multiplying the VaR estimate at a shorter, i.e.

daily, horizon by the square root of the number of days t in the period of interest.
11 HS assumes that past and present moments of the density function of returns of a speci®c

risk factor are constant and equal. For a detailed discussion of the properties of HS, see Pritsker

(2000).
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Today there is a large body of evidence suggesting that the distribution of

speculative price changes is fat-tailed with changing conditional moments.

Empirical studies have found that there is a tendency, known as volatility

clustering, for large price changes to be followed by more large changes. An

increase in portfolio volatility during the risk measurement horizon affects the

portfolio VaR.12 Unfortunately, HS does not take into account such a change.

4. Filtered Historical Simulation (FHS)

The above limitations of HS, a limited set of outcomes and unresponsive-

ness to changes in market volatility, can be overcome with the use of ®ltered

historical simulation (FHS) (Barone-Adesi et al., 1999). FHS is a generalized

HS. It has all the positive properties and overcomes most of the HS weak-

nesses. In FHS the stationarity assumption is relaxed; historical returns13 are

®rst standardized by volatility estimated on that particular day (hence the name

of ®ltered),

ç t � å t�����
ĥ t

p
This ®ltered process yields approximately i.i.d. returns (residuals) suited for

HS.

Before ®ltered returns are used as innovations, they are scaled (multiplied)

by the current conditional forecast of volatility; thus they re¯ect current market

conditions:

Y�T�n � Y�T�nÿ1 � Y�T�nÿ1ç
����������
hT�n

q
(2)

where

ç� � fç�1 , ç�2 , . . ., ç�Tg ç�i 2 È
where i � 1, . . ., T refers to past days and

����������
hT�n

p
is the simulated conditional

volatility for VaR day n and is estimated recursively by a time-series model,

such as

hT�n � ù� á(æ�T�nÿ1)2 � âhT�nÿ1(3)

12 For some types of investments, two or three consecutive adverse price changes may be

suf®cient to ruin the investor, i.e. contingent claims and investments with leverage. In a leveraged

portfolio, investors borrow at a ®xed rate and invest in a risky asset, usually equity. Leverage

increases positive expected return because leverage magni®es volatility. The larger the leverage

factor, the higher the gains will be in the case of positive returns. But large adverse returns increase

the downside risk and chances of a disaster. Thus the VaR is far more important in the management

of leveraged investments.
13 Since returns are usually serial correlated in practice we replace Yt with å t , where

å t � Yt ÿ E[Yt=Ö tÿ1]
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where æ�T�n � ç� ����������
hT�n

p
is computed as in (2).

The `unconditional' or `un®ltered' HS described earlier is a special case

of FHS, which holds when returns are i.i.d.14 A major advantage of FHS over

HS is that the ®ltering process increases the range of outcomes beyond the

historical record through a change of scale. In other words, FHS provides a

systematic approach to generate extreme events not present in the historical

record, completing the tails of the distribution. FHS requires, therefore, a

shorter historical record than HS to simulate the tails of the distribution of

returns. Because this process is essentially an extrapolation, its validity must

be carefully tested. Barone-Adesi et al. (2000) present evidence of the

adequacy of this procedure for risk management.

The FHS approach can be adapted to stress testing because it simulates

the whole distribution of security returns. It is not limited to the observed

returns as is regular bootstrapping. Therefore, it is possible to sample from

more extreme points in the tails of the multivariate distribution by increasing

the number of simulation runs. As an example, applying FHS over a 10-day

horizon using a database of 500 daily returns, the number of different possible

pathways is 50010 for any given set of initial conditions. Therefore, it is

possible to generate an almost arbitrarily large number of points of the

simulated distribution. This is especially important for portfolios of derivatives

that may experience more stress at points not on the tails of the distribution.

Finding the most stressful conditions for a given portfolio may be slow,

because the probability of each pathway is the inverse of the number of

pathways. Of course, the problem of ®nding the most stressful conditions is

easier for linear portfolios, for which the most stressful conditions are given by

the largest negative or positive returns that can be pre-selected in the simula-

tion procedure.

5. HS or FHS? An Empirical Investigation

In this example, we investigate the difference in VaR estimates between

HS and FHS. Three hypothetical portfolios are selected. The ®rst portfolio

consists of a long position on the S&P100 while each of the other two consists

of a short European call option on the same basis. The historical data set used

in the simulation covers the period from 1 January 1997 until 26 November

1999. Our scope is to compare VaR estimates for the three portfolios using the

two alternative methodologies. Figure 1 shows the daily returns and condi-

tional volatilities from 2 January 1997 until 18 December 1999 from the

14 The algorithm can easily be expanded to generate parallel pathways on a multi-asset

environment. This does not require the use of a correlation matrix. For a full description see

Barone-Adesi et al. (1999).

173G. Barone-Adesi and K. Giannopoulos: Non-parametric VaR Techniques

# Banca Monte dei Paschi di Siena SpA, 2001.



S&P100. The conditional volatility of the returns, shown on the top graph, is

rather non-constant, a fact that contradicts the assumption on which HS is

based.

The value of the linear portfolio, the S&P100 index, at the close of

business on the 26 November is $753.56. The ®rst step in our simulation

consists in generating the simulated scenarios for the S&P100 index using the

two alternative methods. To form the innovations, e, in (1), a random return15

is selected from the historical data set.16 Updating (1) generates multiperiod

scenarios. A total of 5,000 simulated multiperiod scenarios, for 1, 2, . . ., 20

business days ahead, are generated.

Dividing each of the daily returns with that day's volatility forms the set of

innovations, ç�, utilized by the FHS simulation, as shown in Figure 2.

Using the above data set of standardized residuals and the FHS algorithm,

we generate 5000 multiperiod scenarios for days 1, 2, . . ., 20.

To investigate any possible discrepancy on VaR between the two, HS and

FHS, methods, we carry out the FHS using two alternative risk scenarios on

the last trading day. Under the ®rst set of simulations, we set the volatility on

26 November 1999 to a low, but not unrealistic, level of 7 per cent per annum.

On the second sets of simulations, we assume that there was a market crisis

S&P100

1997 1998 1999
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0.125

0.150

0.175

0.200
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0.250

0.275

0.300
VOL

1997 1998 1999
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03
RETURNS

Figure 1: Conditional Volatility and Returns for the S&P100

15 Rather, these are zero mean returns.
16 The data are drawn with replacement. There are 770 observations in the data set. At each

simulation run, on average, each observation will be drawn approximately 7 times.
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and the market volatility on the last trading date jumped to 30 per cent per

annum.

Figure 3 shows the histogram from the simulated prices for day 1 as

produced in each of the three simulations. The top histogram displays the

distribution of returns from the HS, while the other two histograms report

returns from the FH under each of the two, low and high, volatility regimes

prevailing on the last trading day.

S&P100 - standardized returns

1997 1998 1999
-3
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-1

0

1
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4

Figure 2: Standardized Returns
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Figure 3: S&P Simulated Prices for Day 1
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Figure 4 shows the histograms for each set of simulated prices correspond-

ing to a 10-day horizon. As one would expect, in a volatile period ± when the

volatility on the last trading date is 30 per cent per annum ± the forecast

interval is wide, and in quiet periods it is narrow. This is re¯ected in the

forecast produced by the FHS. On the contrary, HS makes interval forecasts

that are static, taking no notice of the last trading date's risk level.

The VaR at 99% is the lower percentile in the set of simulated prices.

Table 1 reports the various VaR estimates for days 1, 5, 10 and 20. The second

column from the left shows the VaR at 99% as estimated by the HS. The other

two columns report the FHS under two different risk states prevailing at the

close of business on 26 November 1999. The historical volatility in the

historical data sample was 19.5 per cent per annum.17

As expected, the VaR estimates produced under the HS occur between the

other two estimates as computed by the FHS algorithm, e.g. using two different

volatility values on the close of business on 26 November 1999. The 1-day

VaR is proportional to the initial volatility used in this simulation process. Due

however, to the mean-reverting volatility process that characterizes the para-

meterization of conditional volatility on all GARCH models, we observe that

the VaRs estimated with the FHS algorithm have a tendency, in the long run, to

converge towards the HS VaR estimates. The ratio of 1-day VaR estimates

550.0 590.5 631.0 671.5 712.0 752.5 793.0 833.5 874.0

0.00

0.01

0.02

0.00

0.01

0.02

0.00

0.01

0.02

HS.DAY10

FH.07.DAY10

FH.30.DAY10

Figure 4: S&P100 Simulated prices of Day 10

17 By calibration the average GARCH volatility is equal to the historical one.
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computed by FHS with initial volatility of 7 per cent per annum and that

computed by the HS is 0.35. This is very close to the ratio between the initial

volatilities used by the two methods. On a 10-day VaR, the same FHS

estimates closes the gap, with the ratio rising to 0.68 and, on a 20-day VaR, the

ratio increases to 0.90. We draw similar conclusions by analysing the ratio

between the HS and that of the FHS that has an initial volatility of 30 per cent

per annum. This observation indicates that the bias present in the HS estimates

becomes smaller at longer horizons.

The discrepancies in VaR between the two methods, HS and FHS are

obvious in the above example. The magnitude in the discrepancies, however,

increases when the portfolio contains predominantly nonlinear instruments.

The next example uses two alternative portfolios, each containing a single,

short, European call option. The option in the ®rst portfolio has a strike of

$678 and is `in-the-money'. The second call is chosen to be `out-of-the-

money' with a strike of $828. Both options expire in twenty business days. We

used the Black and Scholes model (1973) to ®nd their market value18 on 26

November 1999. The market value for the `in-the-money' call is estimated at

$77.54 and the value for the `out-of-the-money' call is estimated at $0.85.

These numbers are the values of the two portfolios at the end of the business

on 26 November 1999.

Using the same simulated scenarios for the linear portfolios, we computed

sets of 5,000 pay-offs and pro®ts for the nonlinear portfolio. The pro®t at VaR

horizon t for a single simulation run is

Profit t � ÿ(Max[Pt ÿ X , 0], ÿC)(4)

where X is the strike, C is the market value of the call on 26 November 1999

and Pt is the simulated value of the underlying asset at VaR horizon t for that

simulation run. The simulated pro®ts for the in-the-money call and for 10-day

horizon are shown in Figure 5. The top histogram displays the HS pro®ts and

the other two the pro®ts for the FHS under low and high volatility regimes

prevailing on the last trading date.

Table 1: VaR Estimates (at 99%) on a Linear Portfolio

Horizon (days) HS FHS @ 7% FHS @ 30%

1 23.87 8.30 35.67
5 57.96 30.08 72.91

10 73.66 50.47 102.04
20 97.52 87.63 129.23

18 Assuming that the implied volatility equals the historical volatility on 26 November 1999,

i.e. 19.5 per cent per annum.
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The upper percentile on each of the simulated set of prices less the call

premium is our VaR estimate at 99% probability. These values, together with

the ones for day 1, 5 and 20, are reported in Table 2. Note that the effect of low

volatility is relatively stronger at short horizons, but it is still important at

longer horizons. In summary, neglecting to adjust HS to current market

conditions through FHS may cause substantial errors in the computation of

risk.

Table 3 reports the equivalent VaR values for the portfolio invested in the

short out-of-the-money call option, with a strike of $828.

0 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221

0.00

0.01

0.02

0.00

0.01

0.02

HS.DAY10

FH.07.DAY10

FH.30.DAY10

Figure 5: Simulated Pay-off for the `in-the-money' Call at 100-day VaR

Table 2: VaR Estimates (at 99%) on a Short in-the-money European
Call

Day HS FHS-07 FHS-30

1 19.2815 5.60252 26.43452
5 48.60474 19.43428 59.78121

10 70.23241 33.21167 80.42265
20 97.42933 59.60564 106.8141
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The effect of different volatility on VaR estimates is even more important at

the longer horizon.

6. Conclusions

In principle, ®ltered historical simulation (FHS) can produce risk meas-

ures that are consistent with the current state of markets at any arbitrarily large

con®dence level. These impressive gains allow FHS to dominate historical

simulation (HS) easily. In fact, HS fails to condition forecasts on the current

state of the markets. The difference between the two simulation methods is

magni®ed by the presence of options in the portfolio.

Although the superiority of FHS on HS is obvious, further development

may mitigate some of the current limitations of FHS. These limitations of FHS

rest mostly on two of the assumptions on which it is based: that correlations

across asset returns are not related to the scale of returns; and that the scaling

process accurately describes the tails of the distribution of asset returns.

Neither of these assumptions is literally true. Therefore, our current FHS

technique should be considered as a ®rst-order approximation to a simulation

engine accurately describing portfolio returns.

Table 3: VaR Estimates (at 99%) on a Short out-of-the-money
European Call

Day HS FHS-07 FHS-30

1 0.0 0.0 0.0
5 0.0 0.0 0.0

10 0.0 0.0 5.28878
20 22.55335 0.0 29.50686
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Non-technical Summary

Historical simulation (bootstrapping) is being used increasingly in the risk

management industry. It consists of generating scenarios by sampling historical

returns associated with each risk factor included in the portfolio. The aggregate

value of all linear and derivative positions produces a simulated portfolio

value. The procedure is repeated many times using all past returns.

Historical simulation does not require any statistical assumption beyond

stationarity of the distribution of returns or, in particular, their volatility. Since
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the estimated value-at-risk (VaR) is based on the empirical distribution of

historical returns of each individual risk factor, it re¯ects a more realistic

picture of a portfolio's past risk.

Historical simulation's ability to predict future losses, however, may be

undermined if the distribution of any risk factors is not i.i.d. (independently

and indentically distributed). Using a constant volatility model to calculate

VaR when the distribution of returns is not stationary, as is the case with most

daily ®nancial time series, could be very misleading. During days with higher

volatility, we would expect larger than usual losses. That contrasts with

historical simulation, where the volatility of N days is proportional to the time,

i.e. constant volatility is assumed over any period.

There is a large body of evidence suggesting that the distribution of

speculative price changes is fat-tailed with changing conditional moments.

Empirical studies have found that there is a tendency for large price changes to

be followed by more large changes. An increase in portfolio volatility within

the risk measurement horizon affects the portfolio VaR. Unfortunately histor-

ical simulation does not take into account such a change.

The above limitations of historical simulation ± limited set of outcomes

and unresponsiveness to changes in market volatility ± can be overcome with

the use of ®ltered historical simulation (FHS). Filtered historical simulation

has all the positive properties and overcomes most of the historical simulation

weaknesses. In ®ltered historical simulation, the stationarity assumption is

relaxed; historical returns are ®rst standardized by volatility estimated on that

particular day.

The ®ltering process yields approximate i.i.d. returns (residuals) suited for

historical simulation. Before ®ltered returns are used as innovations, they are

scaled (multiplied) by the current conditional forecast of volatility; thus, they

re¯ect current market conditions.

The `unconditional' or `un®ltered' historical simulation is a special case

of FHS, which holds when returns are i.i.d. A major advantage of FHS over

historical simulation is that the ®ltering process increases the range of out-

comes beyond the historical record through a change of scale. In other words,

FHS provides a systematic approach to generate extreme events not present in

the historical record, completing the tails of the distribution. FHS requires

therefore a shorted historical record than historical simulation to simulate the

tails of the distribution of returns.

The FHS approach can be adapted to stress testing because it simulates

the whole distribution of security returns. It is not limited to the observed

returns as is regular bootstrapping. Therefore, it is possible to sample from

more extreme points in the tails of the multivariate distribution by increasing

the number of simulation runs.
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