Don’t look back

Historical simuilation may be a natural setting for scenario analysis,
but it must take account of current market conditions,
caution Giovanni Barone-Adesi, Frederick Bourgoin and Kostas Giannopoulos

alue-at-risk is becoming increasingly popular as a man-

agement and regulatory tool. But before this accep-

tance goes much further, we need to assess its reliability

under financial market conditions. Most VAR models

deal either with the non-normality of security returns

or with their conditional heteroscedasticity, but not
with both. We are developing a modified historical simulation approach
that allows for both effects.

Historical simulation relies on a specific distribution (usually uniform or
normal) to select returns from the past. These returns are applied to cur-
rent asset prices to simulate their future returns. Once enough different
paths have been explored, it is possible to determine a portfolio VAR with-
out making arbitrary assumptions about the distribution of portfolio returns.
This is especially useful where there are abnormally large portfolio returns.

It is well known that large returns cluster in time (see, for example,
Mandelbrot, 1963, and Black, 19706). The resulting fluctuations in daily
volatility make the confidence levels of some VAR calculations unreliable
(Boudoukh et al, 1995). This is the case with those that ignore clustering,
such as VAR measurements based on the standard variance-covariance ma-
trix and Monte Carlo methods, which typically ignore current market con-
ditions to produce flat volatility forecasts for [uture days. Moreover, the use
of the covariance matrix of security returns or the choice of an arbitrary
distribution in the Monte Carlo method usually destroys valuable infor-
mation about the distribution of portfolio returns.

To make our historical simulation consistent with the clustering of large
returns, we model the volatility of our portfolio as an asymmetric Garch
(Generalised autoregressive conditional heteroscedasticity) process (Engle
& Ng, 1993) that generalises the Garch model. This model allows positive
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and negative returns to have different impacts on volatility (known as the
leverage effect, see Black, 1976). Past daily portfolio returns are divided
by the Garch volatility estimated for the same date to obtain standardised
residuals, These are independent and identically distributed (11D) and are
therefore suitable for historical simulation.

To adjust them to current market conditions, we multiply a randomly
selected standardised residual by the Garch forecast of tomorrow’s volatil-
ity. In this way, a simulated portfolio return for tomorrow is obtained. This
simulated return is used to update the Garch forecast for the following day,
which is then multiplied by a newly selected, standardised residual to sim-
ulate the return for the second day. Our recursive procedure is repeated
until the VAR horizon (ie, 10 days) is reached, generating a sample path
of portfolio volatilities and returns. We repeat our procedure to obtain a
batch of sample paths of portfolio returns. A confidence band for the cor-
responding portfolio values is built by taking the kernel (empirical) fre-
quency distribution of values at each time. The lower 1% area identifies
the worst case over the next 10 days.

To illustrate our procedure, we constructed a hypothetical portfolio, di-
versified across all 13 national equity markets in our data sample. To form
our portfolio, cach equity market is weighted in proportion to its capital-
isation in the world index (MSCI) as at December 1995. The portfolio
weights are reported in table A.

These weights are held constant for the entire 10-year period and mul-
tiplied by the 13 local index returns. So the portfolio returns are calculat-
ed again backwards to reflect the current weightings. Since the aim of
market risk is to quantify eventual portfolio losses in a single currency, all
local portfolio returns are measured in dollars. The descriptive statistics, to-
gether with the Jarque-Bera (1980) test for normality, are shown in table B,
where the p-value indicates the probability that our portfolio returns are
generated from a normal distribution.

Figure 1 shows the empirical distribution of the portfolio’s returns. The
rejection of normality in table A and the pattern of clustering visible in fig-
ure 1 leads us to model our portfolio returns, I, as a Garch process with
asymmetries, with daily volatility, h,, given by:

n=Ri=p+e (1a)

2
he = @+ o(ee-g +7) + Bhi_y (1b)

The variance for small increments on the other end can be written as:
h? = cZAt = O(At)

The daily return in equation (1a) is the sum of each expected value, y,
plus a random residual, €. Because of the small, statistically insignificant
value of y?, this term will be neglected in the calculation of daily volatili-
ties.' Equation (1b) defines the volatility of €, h,, as an asymmetric Garch
process. h, is the sum of a constant, ®, plus two terms reflecting the con-
tributions of the most recent “surprise”, €_,, and the last period's volatili-
ty, h_;. Finally, y allows for the asymmetric response of the innovation on
the volatility and is statistically significant.

Therefore, our portfolio volatility is modelled to depend on the most
recently observed portfolio returns. The combination of asymmetric Garch
volatility and portfolio historical returns offers us a fast and accurate

"In fact, for stock prices, pi2 is in the order of 12 4A,:

n? = c2At? = O(Atz]
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1. World capitalisation weighted portfolio
returns: Jan 1985-Feb 1996

Mean (annual)

T T Tt Tl oo,

85 86 87 88 89. 90 9
measure of the past, current and future volatilities of the current portfolio.
We do not need the correlation matrix of security returns. Furthermore,
our VAR method contains fewer “unpleasant surprises”, since Garch mod-
els allow for fat tails on the unconditional distribution of the data.? The ef-
fects of our choice become apparent if we compare the returns in figure
1 with those in figure 2, where they have been scaled by their daily volatil-
ity, so that:

Nt

= F (2)

Clustering of returns is reduced by volatility scaling, so the distribution
of returns now appears to be more uniform, making the historical simula-
tion more appropriate, However, the large number of returns still exceed-
ing three standard deviations suggests that our scaling does not make
returns normal. Our annualised portfolio volatility, shown in figure 3, var-
ied from 7% to 21% over the 10-year period.

The scaled returns are the foundation of our simulation. To simulate
portfolio returns over the next 10 days we select randomly 10 returns from
figure 2 using the “hootstrap” methodology developed by Efron & Tibshi-
rani (1993). We then construct iteratively the daily portfolio volatility that
these returns imply according to equations (1a) and (1b) and use this volatil-
ity to rescale our returns. The resulting returns therefore reflect current
market conditions, rather than the market conditions associated with re-
turns in figure 1. In other words, we simulate future standardised residual
returns as a random vector @ of outcomes from a stationary distribution,
The possible outcomes of the stationary distribution are the historical resid-
uals, standardised by the corresponding daily volatility:

g = {e,, = 6}, 0 ={n,m,...,1r}

2 For a Garch process with conditional normality, the excess of kurtosis of the un-
conditional distribution of the process is greater than three. See Bollerslev (1986)
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2. Portfolio stress analysis (standardised
residuals): Jan 1986-Dec 1995
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where | = 1,...,10 days and j = 1,...,N, where N is the number of simu-
lation runs performed. The actual simulated returns are given by:

s = Etsiyhtsi (3a)

where h'“_‘ is a (simulated) volatility estimate obtained as:
& " 2 *
hivi =0 +ofetiiog +7) +Phiriog (30)

and:
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Market risk

4. Normalised estimated distribution of returns
in 10 days v. the normal density (10,000
simulations)

* *
Et4i = Ztyhesi-1

z, is a random standardised residual estimated as in equation (2), but
rescaled to account for current market risk. In this way, we preserve the
time-series properties of the data.

To obtain the distribution of our portfolio returns, we replicate the above
procedure N = 10,000 times. The resulting (normalised) distribution is shown
in figure 4. The normal distribution is shown as a dotted line for ease of com-
parison. We may extend our procedure to multiple assets, preserving the cor-
relations of asset returns by taking returns in the same day for each asset as
input to our simulation, Furthermore, unlike ordinary historical simulations,
it is possible to preserve autocorrelation and lagged cross correlation patterns
in the data by allowing past price changes to affect current returns.?

Not surprisingly, simulated returns on our well-diversified portfolio are
almost normal, except for steeper peaking around zero and some cluster-
ing in the tails. The general shape of the distribution supports the validity
of the usual measure of VAR for our portfolio. However, a closer exami-
nation of our simulation results shows how even our well-diversified port-
folio may depart from normality. There are, in fact, several occurrences of
very large negative returns, reaching a maximum loss of 9.52%. Our em-
pirical distribution implies losses of 3.38% and 2.24% at confidence levels
of 1% and 5% respectively.

The reason for this departure is the changes in portfolio volatility and
thus in portfolio VAR, as shown in figure 5. The portfolio VAR over the
next 10 days depends on the random returns selected in each simulation
run. Its pattern is skewed to the right, showing how large returns tend to
cluster in time. These clusters provide the base for realistic worst-case sce-
nario analysis consistent with historical experience. To see the whole dis-
tribution of worst-case scenarios, we need simply to repeat our simulation
and record the worst-case scenario of each run.

The worst-case scenario, as described in Boudoukh et @, is defined as
the average of the outcomes in a given percentile. We have extended their
approach by taking into account the effect of time-varying volatility. Of
course, our method would produce more extreme departures from nor-
mality for less-diversified portfolios.

In conclusion, our simulation methodology allows for fast evaluation
of VAR and worst-case scenarios for large portfolios. It takes into account
current market conditions and does not rely on knowledge of either the
correlation matrix of security returns or of the conditional distribution of
the underlying process. Our methodology applies directly to asset returns
that can be modelled as conditional heteroscedastic processes. Bonds and
3 Only heteroscedasticity in this case. However, if appropriate, autoregressive and

moving average returns can easily be inserted in equation (1a) to maintain any other
properties

5. Estimated distribution of portfolio VAR in 10
days (10,000 simulations)
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options may be included by expressing their values in terms of assets meet-
ing our requirements, such as spot rates (for bonds) and underlying assets
(for options). A full re-evaluation procedure for these assets can then be
included at each step of our simulation (Barone-Adesi, Giannopoulos &
Vosper, 1997). B
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