
Market risk 

Historical simulation may be a natural setting for scenario analysis, 
but it must take account of current market conditions, 

caution Giovanni Barone-Adesi, Frederick Bourgoin and Kostas Giannopoulos 

aiue-al-risk is becoming increasingly popubr as a man-
3gcmenl and regulatory tool. BUI before Ihis acccp­
i:lIlce goes much furrher, wc need to :ISSCSS its rdi:lhility 
unt!l.:f fin:l1lcial 1l1:lrkd condit ions. Most VAR models 

deal either wilh the non-normality of security returns 
or with their conditional heleroscedasticity, but not 

with ho th. We :II'C developing :1 modified hi.sloric: t1 simul:ition :Ippro:lch 
1hal allows for bolh effects. 

I-l islorica l simul:lI ion rdies on a specific dislribution (usu:liiy uniform o r 
normal) to se l~cl returns from the P:.lSl. These returns :lrc applied 10 cur­
rent assel price!> (0 simulait:: their future returns. Once enough difTer(.!nt 
paths h:IVC been explored, il is po.ssible to determine a portfolio VAH with­
out making ~lIb i tr.:lly assumptions ;Iho lH the distribution of ponfolio n..:lurns. 
This is especially u~eful where there are abnonnally large ponfolio n..: turns. 

I1 is well known th~Lt large returns cluster in time (see, for ex:.unple, 
J"landelbrot, 1963, :lnd llbck, 1976). The resulting fluctuations in daily 
volatility make lhe confidence levels or some VAR caicllbtions unrcliablt.! 
(Boudoukh et ai, 1995). Th is is the case with those that ignon.: c1ush.:ring, 
sudl :IS VAl{ Ille:tSlln:l1l<,::nts b:tsed on the standard variance-covariance ma­
trix and Monte Carlo methods, which typically ignore current market con­
ditions to produce flat volatility forecasts for future days. MoreoV<.::r, the use 
of the covariance matrix of security relurns or the choice of ;:1[) <Irbitrary 
distribution in the Monte Carlo method usually destroys valuable infor­
mation about the distribution of portfoliO returns. 

To make our historic:tI simul:.ition consistent with the clustering of large 
returns, we model the volatility of our portfolio as an asymmetric Garch 
(GenerJlised autoregressive conditional heteroscedasticity) process (Engle 
& Ng, 1993) that general ises Ihe Garch model. This model allows positive 

Country 

Denmark 0.004528 
France 0.035857 

Germany 0.039086 

Hong Kong 0.017645 

Italy 0.012709 

Japan 0.233527 
Netherlands 0.022900 
Singapore 0.006667 
Spain 0.010254 
Sweden 0.011 571 
Switzerland 0.033898 

UK 0.096264 
US 0.407818 

and negative retu rns to have different impacts on volatility (known as the 
Icvcr:.tge effect, see i3lack, 1976) . Past chilly portfoliO returns are divided 
hy the Garch volatility estimated for the same date to obtain standardised 
n.!sidu:tl. ... ThL'se are independent and k k:nticdly dist ributed 0[1)) and arc 
therefore suitable for historical simulation . 

To ad just them to current market conditions, wc multiply a r:1ndomly 
se lected stancbr<iised residua l hy the Garch forecast of tomorrow's volati l­
ity. In this w:JY,:t simulated portfolio return for tolllorrow i .... uht:Jinco. Th i~ 

simulated return is used lO update the Garch forecast for the follOWing day, 
which is then multiplied by a newly selected, standardised residual to sim­
ula te the return for the second cia)' . Our recursive procedure is repcJted 
unti l the VAR horizon (le, 10 d.IYs) is rc.lChcd, generating a sample path 
of ponfolio voialil ilies :mcl returns. Wc n.:pe:lI our procedure to obtain a 
batch o f sample paths of portfolio returns. A confidence band for the cor­
responding portfolio values is built by taking th /": kernd (empirical) fre­
quency distribulion of values ~It each time. The lo wer 1% area identifies 
the worst GISt.' over the next 10 clays. 

To illustrate our procedure, wc constructed a hypothetical portfoliO, di ­
versi fied across all 13 nat ional eqUity markets in our data sample. To form 
our portfoliO, each equity market is weighted in proportion IQ its c<1pital­
isation in the world index (MSC!) as at December 1995. The portfoliO 
weights are repolled in table A. 

These weights arc held constant for the entire lO-year period and mul­
tiplied by the 13 loca l index returns. So the portfolio returns are calculat­
ed again backwards to reflect the current weightings. Since the aim of 
market risk is 10 quantify eventual portfo lio losses in a single currency, all 
local portfoliO returns are measllred in dollars. The descriptive statistics, to­
gether with the Jarque-L3era (980) test fo r normality. arc shown in table 13, 
where the p-va lue indicates the probabilit y that Oll r portfoliO retlJrns are 
generated from a nonn~tI d istribution. 

Figure 1 shows the empirical distribut ion of the portfolio's returns. The 
reject ion of normality in table A and the IXHtern of clustering visible in fig­
ure 1 leads us 10 modd our portfo lio returns, rt' as a Garch process with 
asymmetries, with daily volatility, ht, given by: 

(la) 

2 
ht = U) + "(£t- 1 + y) + pht- 1 (l b) 

The variance for small increments on the other end G ill be written as; 

hr = crllt = O(lIt) 

The daily return in equation (la) is the sum of each expected value, J.1 , 
plus a random residual, ~. Because of the small , sta tist ica lly il~significant 
value of J.12, this term will be neglected in the calculation of daily volat ili­
ties.! Equation (lb) defines the vola tilit y of £1' ht, as an asymmetric Garch 
process. ht is the sum o f a conslanl, 00, plus two terms reflecting the con­
tributions o f the most recent "surprise", £t-l ' and the last period's volat ili­
ty, ht_I ' Finally, y allows for the asymmetric response of the innovation on 
the volat ili(y and is statistically Significant. 

Therefore, our portfoliO volatility is modelled 10 depend on the most 
recently observed portfoliO n.:lurns. The combination of asymmetric Garch 
volatility and portfo liO historical returns offers us a fast and accurate 

1 In fact, for stock pn'ces, J12 is in the order of J..I. 2 tl[: 

112 = C2M2 = 0(M2) 
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1. World capitalisation weighted portfolio 
returns: Jan 1985-Feb 1996 
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measure of the past, current and fururc vola tiJities of the current portfolio. 
We do not need the correlation m,llrix of security returns. Furthermore, 
our VAH method conlains fewer "unplc:1sant surprises", since Garch mod­
els allow for fa! tails on the unconditional distribution of the data. l The ef­
fects of our choice become apparent if wc compare the returns in figure 
I with those in figure 2, where they have been scaled by the ir dai ly volatil­
ity, so that: 

rt 
Zt =J; (2) 

Clustering of returns is reduced by volatility sca ling, so the distribution 
of returns now appears to be more uniform, making the historical simula­
tion more appropriate. However, the large number of returns still exceed­
ing three standard deviations suggests that our scaling does not make 
relll rns normal. Our annualised portfolio volatil ity, shown in figure 3, var­
ied from 7% 10 21% over the lO-year period. 

2. Portfolio stress analysis (standardised 
residuals): Jan 1986-Dec 1995 
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3. Annualised volatility of the portfolio: Jan 
1986-Dec 1995 
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The sca led relllrns are the foundation of our simulation. To simulate 

portfoliO retu rns over the next 10 days we select randomly 10 returns from 
figure 2 llsing the "bOOtstr.:lp" methodology developed by Efron & Tibshi­
rani (993). We then construct iteratively the daily portfo lio volatility that 
these returns imply according to equations (1 a) and Ob) and lIse this volatil­
iry to resca le our returns. The resu lting returns thererore renect current 
market conditions, rather than the m~l rkel condil ions associated w ith re­
turns in figu re 1. In other words, we simulate future standardised residual 
relurns as a random vector <3 of outcomes from a sta tionary distribution. 
The possible outcomes ofl he stationary distribution are the historical resid­
uals, sland:mlised by the correspondi ng dail y vobli lity: 

i 
O+---~-.--.---r--.---r--r--.--.-~ 

92 93 94 951 86 87 88 89 90 91 

where i = 1 •. .. ,10 days and j = 1 •... • N, where N is Ihe number o f simu­
lation runs performed. The actu~ll simulated returns arc given by: 

, , ,.­
rl+i = tt+iVht +i 

where h; +i is :I (s imub[ed) vobtilit y estim:l1e obtained aoS: 

.. = {£;j = el , e = {r"r2, ,, ,,rT} 

2 For a Garch process with conditional normality, the excess of kurtosis of the un­
conditional distribution of the process is greater than three. See Bollersfev (1986) and: 

, (' )2, ht+i = 00 + a tt+i-l + Y + Pht +i- l 
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4. Normalised estimated distribution of returns 
in 10 days v. the normal density (10,000 
simulations) 
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~ is a random swnclarcli'sed residual estimated as in equat ion (2), but 
rescaled to account for current market risk. In this W<IY, wc preserve the 
time-series properties of the data. 

To obl:lin tht: distribution of our P011folio returns, wc replicate the above 
procedure N == 10,000 times. The resulting (normalised) distribution is shown 
in figure 4. The normal distribution is shown as a doned line for case of com­
parison. We may extend our procedure to multiple assets, preserving the COf­

relations of asset returns by taking returns in the same day for each asset as 
input to our simubtion. Furthermore, unlike ordinal)' hi~torical simulmions, 
it is possible to preselve autocorrelation and lagged cross correlation patterns 
in the data by allowing past price changes (0 affect current returns.' 

Not surprisingly, simulated returns on our well~diversified portfolio are 
almost normal, except for sleeper peaking around zero and some dusler~ 
ing in the tails. The general share of the dislributidn supports the validity 
of the usual measure of VAR for our portfolio. However, a closer exallli~ 
nation of our ~illlulation results show~ how even our well~diversified port~ 
folio m;!y depart from normality, There are, in fact, several occurrences of 
very brge neg:l1ive returns, reaching :l maximum loss of 9.52%. Our em~ 
pirical distribution implies losses of 3.380/0 and 2.24% at confidence levels 
of 1% and 5% respectively. 

The reason for this departure is the changes in portfolio volatility and 
thus in pOl1folio VAR, as shO\vn in figure 5. The portfolio VAR over the 
next 10 clays depends on the random returns seleClecl in each simulation 
run. Its pattern is skewed to the right, shOWing how large returns tend to 
cluster in time. These du~ters provide the base for reali~tic \Vorst~Glse sce~ 
nario :m:t1ysis consistt'nt with historical experience. To s(;'e the whole tlis· 
tribution of \Vors t ~casc scenarios, wc need simply to repeat our simulation 
and rcrord the worst~case scen:lrio of each run. 

The worst~case scen:lrio, as described in Boudoukh el aI, is defined as 
the avel.lge of the outcomes in a given percentile. We h:tve extended their 
approach by laking in to account the effect of time~varying volatility. Of 
course, ollr method would produce more extreme dep:lrtures from nor~ 
nulity for less~diversificd ]1onfolios. 

In conclusion. our simulation methodology allows for fast ev:du:l1 ion 
or VAR :tnd worst~C:lse scenario~ for brge portfol iOS. It t"kes into account 
current market conditions and does not rely on knowledge of either the 
correlation matrix of security returns or of the conditiona l distribution of 
the underlying process. Our methodology applies direct ly to asset returns 
tl1:11 CII1 he !l1oddktl as condition:11 hett'roscccbstic processes. Bonds and 

3 Only heteroscedasticity in this case. However, jf appropriate, autoregressive and 
moving average returns can easily be inserted in equation (1 a) to maintain any other 
properlles 

5. Estimated distribution of portfolio VAR In 10 
days (10,000 simulations) 

options may be included by expressing their values in terms of assets meet~ 
ing our reqUirements, such as spot rates (for bonds) and underlying assets 
(for opt ions). A full re~eV:lIUalion procedure for these asselS ("an then be 
included at each step of our simulation (I3:1rone~Adesi, Giannopoulos & 
Vosper, 1997) . • 
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